Adaptive Submodular Optimization under Matroid Constraints

نویسندگان

  • Daniel Golovin
  • Andreas Krause
چکیده

Many important problems in discrete optimization require maximization of a monotonic submodular function subject to matroid constraints. For these problems, a simple greedy algorithm is guaranteed to obtain near-optimal solutions. In this article, we extend this classic result to a general class of adaptive optimization problems under partial observability, where each choice can depend on observations resulting from past choices. Specifically, we prove that a natural adaptive greedy algorithm provides a 1/(p+ 1) approximation for the problem of maximizing an adaptive monotone submodular function subject to p matroid constraints, and more generally over arbitrary p-independence systems. We illustrate the usefulness of our result on a complex adaptive match-making application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms

Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a simple single objective evolutionary algorithm called (1 + 1) EA and a multiobjective evolutionary algorithm called GSEMO until they have obtai...

متن کامل

Maximizing Submodular Functions under Matroid Constraints by Multi-objective Evolutionary Algorithms

Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a multi-objective evolutionary algorithm called GSEMO until it has obtained a good approximation for submodular functions. For the case of monoto...

متن کامل

Maximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

On maximizing a monotone k-submodular function subject to a matroid constraint

A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative ksubmodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent work of Iwata, Tanigawa and Yoshida presenting a 1/2-approximation algorithm. Iwata et al. also pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1101.4450  شماره 

صفحات  -

تاریخ انتشار 2011